Norm inequalities for vector valued random series
نویسندگان
چکیده
منابع مشابه
Operator Valued Series and Vector Valued Multiplier Spaces
Let $X,Y$ be normed spaces with $L(X,Y)$ the space of continuous linear operators from $X$ into $Y$. If ${T_{j}}$ is a sequence in $L(X,Y)$, the (bounded) multiplier space for the series $sum T_{j}$ is defined to be [ M^{infty}(sum T_{j})={{x_{j}}in l^{infty}(X):sum_{j=1}^{infty}% T_{j}x_{j}text{ }converges} ] and the summing operator $S:M^{infty}(sum T_{j})rightarrow Y$ associat...
متن کاملOperator-valued extensions of matrix-norm inequalities
The bilinear inequality is derived from the linear one with the help of an operatorvalued version of the Cauchy-Schwarz inequality. All these results, at least in their finite form, are obtained by simple and elegant methods well within the scope of a basic course on Hilbert spaces. (They can alternatively be obtained by tensor product techniques, but in the author’s view, these methods are les...
متن کاملExtremal Vector Valued Inequalities for Hankel Transforms
The disc multiplier may be seen as a vector valued operator when we consider its projections in terms of the spherical harmonics. In this form, it represents a vector valued Hankel transform. We know that, for radial functions, it is bounded on the spaces Lplq (r n−1 dr) when 2n n+1 < p, q < 2n n−1 . Here we prove that there exist weak-type estimates for this operator for the extremal exponents...
متن کاملoperator valued series and vector valued multiplier spaces
let $x,y$ be normed spaces with $l(x,y)$ the space of continuous linear operators from $x$ into $y$. if ${t_{j}}$ is a sequence in $l(x,y)$, the (bounded) multiplier space for the series $sum t_{j}$ is defined to be [ m^{infty}(sum t_{j})={{x_{j}}in l^{infty}(x):sum_{j=1}^{infty}% t_{j}x_{j}text{ }converges} ] and the summing operator $s:m^{infty}(sum t_{j})rightarrow y$ associat...
متن کاملVector–valued Hardy Inequalities and B–convexity
Inequalities of the form ∑∞ k=0 |f̂(mk)| k+1 ≤ C ‖f‖1 for all f ∈ H1, where {mk} are special subsequences of natural numbers, are investigated in the vector-valued setting. It is proved that Hardy’s inequality and the generalized Hardy inequality are equivalent for vector valued Hardy spaces defined in terms of atoms and that they actually characterize B-convexity. It is also shown that for 1 < ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Illinois Journal of Mathematics
سال: 1996
ISSN: 0019-2082
DOI: 10.1215/ijm/1255985935